世上的事,只要肯用心去学,没有一件是太晚的。请你一定不要停下来,成为你想成为的人。
前言
在learn from collection framework design中提到,collection framework分为两部分,分别为Collection
和Map
,其中Collection
又分为三类分别为List
,Set
和Queue
,本篇文章先来分析ArrayList的实现。
ArrayList继承关系
如上图所示,它实现了RandomAccess
(可随机访问),Cloneable
(可克隆),Serializable
(支持序列化和反序列化)接口以及List
接口,并且它还继承了List
的抽象模板类AbstractList
。
其中,前三个接口都是marker interface,没有可以让实现类实现的方法。
下面直接来看ArrayList
内部的一些实现机制。
内部实现
数据结构
其内部维护了一个Object
类型的数组
,即elementData
成员变量,成员变量size
记录list的大小。。
初始化
ArrayList的构造方法有如下三种重载,分别是:
第一种方式:根据初始容量初始化ArrayList。
/** * Constructs an empty list with the specified initial capacity. * * @param initialCapacity the initial capacity of the list * @throws IllegalArgumentException if the specified initial capacity * is negative */ public ArrayList(int initialCapacity) { if (initialCapacity > 0) { // 根据传入的初始的容量大小初始化List,其内部维护的是 this.elementData = new Object[initialCapacity]; } else if (initialCapacity == 0) { this.elementData = EMPTY_ELEMENTDATA; // 是一个长度为0的空数组,即{} } else { // 因数组长度不能小于0,故抛出异常 throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); } }
第二种:使用默认大小,默认内部数组长度为0。
/** * Constructs an empty list with an initial capacity of ten. */ public ArrayList() { this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; // DEFAULTCAPACITY_EMPTY_ELEMENTDATA默认为长度为0的空数组 }
第三种:根据传入的集合构建ArrayList
/** * Constructs a list containing the elements of the specified * collection, in the order they are returned by the collection's * iterator. * * @param c the collection whose elements are to be placed into this list * @throws NullPointerException if the specified collection is null */ public ArrayList(Collection<? extends E> c) { elementData = c.toArray(); // 注意,先构造一个新的数组,然后使用数组拷贝,将旧数据拷贝到新数组,这样效率并不高,并且还浪费内存 if ((size = elementData.length) != 0) { // collection包含元素 // c.toArray might (incorrectly) not return Object[] (see 6260652) if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } else { // collection不包含元素,使用内部预定义的长度为0的数组。 // replace with empty array. this.elementData = EMPTY_ELEMENTDATA; } }
内部数组扩容机制
java.util.ArrayList#ensureCapacityInternal
是专门用于扩容的私有方法,具体如下:
private void ensureCapacityInternal(int minCapacity) { ensureExplicitCapacity(calculateCapacity(elementData, minCapacity)); }
一共有两个步骤,分别为计算所需容量以及扩容两个步。
计算所需容量
calculateCapacity
源码如下:
private static int calculateCapacity(Object[] elementData, int minCapacity) { if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { return Math.max(DEFAULT_CAPACITY, minCapacity); // 如果刚开始是空数组,则第一次扩容,数组长度需扩容到 max(10,需要的最小容量) } return minCapacity; }
扩容
private void ensureExplicitCapacity(int minCapacity) { modCount++; // 记录内部数组扩容次数 // overflow-conscious code if (minCapacity - elementData.length > 0) grow(minCapacity); }
这里为什么要用减法而不直接比较?
因为minCapacity
这个是由原始的大小 + 需要插入的元素的个数得到的,在加法运算后可能会出现溢出,变为负数,变为负数了就不能继续扩容了。
grow
具体如下:
/** * Increases the capacity to ensure that it can hold at least the * number of elements specified by the minimum capacity argument. * * @param minCapacity the desired minimum capacity */ private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; int newCapacity = oldCapacity + (oldCapacity >> 1); if (newCapacity - minCapacity < 0) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0) // 这里之所以用减法还是考虑到新的数组长度可能会溢出 newCapacity = hugeCapacity(minCapacity); // minCapacity is usually close to size, so this is a win: elementData = Arrays.copyOf(elementData, newCapacity); }
huge
源码如下:
private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; }
扩容倍数是1.5,最大数组长度为 MAX_ARRAY_SIZE,即Integer.MAX_VALUE - 8
,之所以要取这个值是因为,有的JVM在实现数组的时候,刚开始会保留一些header的信息,这些信息会占8个字节。在扩展数组时,长度一旦超过这个大小,会抛出OutOfMemoryError
异常。
也就是说,如果当前数组不足以容纳新的元素,则需要1.5倍扩容,最终容量最大为Integer.MAX_VALUE - 8
单个元素插入
有两种方式,分别如下:
方式一,默认在结尾插入,如下:
/** * Appends the specified element to the end of this list. * * @param e element to be appended to this list * @return <tt>true</tt> (as specified by {@link Collection#add}) */ public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; }
方式二,在指定位置插入元素,如下:
/** * Inserts the specified element at the specified position in this * list. Shifts the element currently at that position (if any) and * any subsequent elements to the right (adds one to their indices). * * @param index index at which the specified element is to be inserted * @param element element to be inserted * @throws IndexOutOfBoundsException {@inheritDoc} */ public void add(int index, E element) { rangeCheckForAdd(index); // 注意,检查下标的合法性,这个下标是跟ArrayList的长度比较的,不是跟内部数据的capacity比较的! ensureCapacityInternal(size + 1); // Increments modCount!! // 把指定下标后(包括该下标)的数据整体后移一位 System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element; size++; }
多个元素插入
也有两种方式。
方式一,在结尾插入,如下:
/** * Appends all of the elements in the specified collection to the end of * this list, in the order that they are returned by the * specified collection's Iterator. The behavior of this operation is * undefined if the specified collection is modified while the operation * is in progress. (This implies that the behavior of this call is * undefined if the specified collection is this list, and this * list is nonempty.) * * @param c collection containing elements to be added to this list * @return <tt>true</tt> if this list changed as a result of the call * @throws NullPointerException if the specified collection is null */ public boolean addAll(Collection<? extends E> c) { Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount System.arraycopy(a, 0, elementData, size, numNew); size += numNew; return numNew != 0; }
方式二,在指定位置插入,如下:
/** * Inserts all of the elements in the specified collection into this * list, starting at the specified position. Shifts the element * currently at that position (if any) and any subsequent elements to * the right (increases their indices). The new elements will appear * in the list in the order that they are returned by the * specified collection's iterator. * * @param index index at which to insert the first element from the * specified collection * @param c collection containing elements to be added to this list * @return <tt>true</tt> if this list changed as a result of the call * @throws IndexOutOfBoundsException {@inheritDoc} * @throws NullPointerException if the specified collection is null */ public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount int numMoved = size - index; // 计算需要index后(包括index)空出的元素的个数 if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0, elementData, index, numNew); size += numNew; return numNew != 0; }
移除单个元素
主要有两种方式,分别为:
方式一,移出指定下标对应位置的元素,如下:
/** * Removes the element at the specified position in this list. * Shifts any subsequent elements to the left (subtracts one from their * indices). * * @param index the index of the element to be removed * @return the element that was removed from the list * @throws IndexOutOfBoundsException {@inheritDoc} */ public E remove(int index) { rangeCheck(index); // index 有效性校验,跟 内部元素个数 size 比较 modCount++; E oldValue = elementData(index); // 获取指定下标下的元素 int numMoved = size - index - 1; // 计算需要移动的元素的个数 if (numMoved > 0) // 指定index后的所有元素统一向前一个索引距离 System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work 设置为null,允许gc回收不用的对象,并更新list的大小 return oldValue; }
方式二,移出左边第一个出现的指定元素
/** * Removes the first occurrence of the specified element from this list, * if it is present. If the list does not contain the element, it is * unchanged. More formally, removes the element with the lowest index * <tt>i</tt> such that * <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt> * (if such an element exists). Returns <tt>true</tt> if this list * contained the specified element (or equivalently, if this list * changed as a result of the call). * * @param o element to be removed from this list, if present * @return <tt>true</tt> if this list contained the specified element */ public boolean remove(Object o) { if (o == null) { for (int index = 0; index < size; index++) if (elementData[index] == null) { fastRemove(index); return true; } } else { for (int index = 0; index < size; index++) if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; }
注意,其一,判断相等使用的是equals方法,自定义的对象,需要根据自己的需求重新实现其equals方法;其二,从左向右遍历,只移出第一个跟指定对象相等(equals)的对象。
其中,fastRemove
方法如下:
/* * Private remove method that skips bounds checking and does not * return the value removed. */ private void fastRemove(int index) { modCount++; // 修改次数+1 int numMoved = size - index - 1; // 计算需要向前移动的元素的个数 if (numMoved > 0) // 如果需要移动,则将index后的元素统一向前移动一个元素大小位置,并把最后的元素的引用设为null,便于gc回收不再使用的对象,并更新list的大小。 System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work }
移除多个元素
方式一,移除所有元素
/** * Removes all of the elements from this list. The list will * be empty after this call returns. */ public void clear() { modCount++; // 修改次数 + 1 // clear to let GC do its work for (int i = 0; i < size; i++) // 所有索引下标下的元素引用设置为null elementData[i] = null; size = 0; // 重置list的大小为0 }
方式二,移出指定范围内的元素,包括开始索引不包括结束索引
/** * Removes from this list all of the elements whose index is between * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. * Shifts any succeeding elements to the left (reduces their index). * This call shortens the list by {@code (toIndex - fromIndex)} elements. * (If {@code toIndex==fromIndex}, this operation has no effect.) * * @throws IndexOutOfBoundsException if {@code fromIndex} or * {@code toIndex} is out of range * ({@code fromIndex < 0 || * fromIndex >= size() || * toIndex > size() || * toIndex < fromIndex}) */ protected void removeRange(int fromIndex, int toIndex) { modCount++; // 修改次数 + 1 int numMoved = size - toIndex; // 计算需要移动的元素的个数 System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); // clear to let GC do its work int newSize = size - (toIndex-fromIndex); // 计算list新的大小 for (int i = newSize; i < size; i++) { // 从后往前依次清除指定位置上的元素 elementData[i] = null; } size = newSize; // 更新list的大小 }
注意,这种方式是一个
protected
类型的,即只允许ArrayList子类或其本身调用的方法。
方式三,批量移出给定集合内的元素或不在给定集合内的元素
private boolean batchRemove(Collection<?> c, boolean complement) { final Object[] elementData = this.elementData; int r = 0, w = 0; boolean modified = false; try { for (; r < size; r++) // 从前向后遍历 if (c.contains(elementData[r]) == complement) elementData[w++] = elementData[r]; } finally { // Preserve behavioral compatibility with AbstractCollection, // even if c.contains() throws. if (r != size) { // 剩余的整体前移 System.arraycopy(elementData, r, elementData, w, size - r); w += size - r; } if (w != size) { // 有元素被移除 // clear to let GC do its work for (int i = w; i < size; i++) // 移除之后的设置为null elementData[i] = null; modCount += size - w; // 修改次数 + 移除的元素的个数 size = w; // 修改list的大小 modified = true; // 设置修改标志位为true } } return modified; }
数据移除采用的是双指针,指针
w
维护的是新的list,指针r
用于遍历旧的list,一次外层循环遍历即可得到新的list,其中w
是新的list的大小,算法复杂度是O(n)
方式四,移除指定集合内的所有元素
public boolean removeAll(Collection<?> c) { Objects.requireNonNull(c); return batchRemove(c, false); }
其内部调用的是方式三的方法,不做过多说明。
方式五,移除指定集合外的所有元素
public boolean retainAll(Collection<?> c) { Objects.requireNonNull(c); return batchRemove(c, true); }
方式六,移除符合条件的所有数据
@Override public boolean removeIf(Predicate<? super E> filter) { Objects.requireNonNull(filter); // figure out which elements are to be removed // any exception thrown from the filter predicate at this stage // will leave the collection unmodified int removeCount = 0; final BitSet removeSet = new BitSet(size); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { @SuppressWarnings("unchecked") final E element = (E) elementData[i]; if (filter.test(element)) { removeSet.set(i); removeCount++; } } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } // shift surviving elements left over the spaces left by removed elements final boolean anyToRemove = removeCount > 0; if (anyToRemove) { final int newSize = size - removeCount; for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) { i = removeSet.nextClearBit(i); elementData[j] = elementData[i]; } for (int k=newSize; k < size; k++) { elementData[k] = null; // Let gc do its work } this.size = newSize; if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } return anyToRemove; }
对序列化的支持
/** * Save the state of the <tt>ArrayList</tt> instance to a stream (that * is, serialize it). * * @serialData The length of the array backing the <tt>ArrayList</tt> * instance is emitted (int), followed by all of its elements * (each an <tt>Object</tt>) in the proper order. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{ // Write out element count, and any hidden stuff int expectedModCount = modCount; s.defaultWriteObject(); // Write out size as capacity for behavioural compatibility with clone() s.writeInt(size); // Write out all elements in the proper order. for (int i=0; i<size; i++) { s.writeObject(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } }
注意,在序列化的时候,list大小不能修改,序列化的时候把list的大小size也保存下来了。
/** * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is, * deserialize it). */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { elementData = EMPTY_ELEMENTDATA; // Read in size, and any hidden stuff s.defaultReadObject(); // Read in capacity s.readInt(); // ignored if (size > 0) { // be like clone(), allocate array based upon size not capacity int capacity = calculateCapacity(elementData, size); SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity); ensureCapacityInternal(size); Object[] a = elementData; // Read in all elements in the proper order. for (int i=0; i<size; i++) { a[i] = s.readObject(); } } }
反序列化后,list的capacity和size是一样的。
测试代码如下:
package com.company; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.lang.reflect.Field; import java.util.ArrayList; import java.util.List; public class Main { public static void main(String[] args) throws Exception { // write your code here List<Integer> list = new ArrayList<>(); for (int i = 0; i < 12; i++) { list.add(i); } System.out.println(list.size()); System.out.println(list); ByteArrayOutputStream os = new ByteArrayOutputStream(); ObjectOutputStream oos = new ObjectOutputStream(os); oos.writeObject(list); oos.flush(); byte[] bytes = os.toByteArray(); ObjectInputStream inputStream = new ObjectInputStream(new ByteArrayInputStream(bytes)); List<Integer> o = (List<Integer>)inputStream.readObject(); System.out.println(o.size()); System.out.println(o); Field elementData1 = o.getClass().getDeclaredField("elementData"); elementData1.setAccessible(true); Object[] elementData = (Object[]) elementData1.get(list); System.out.println(elementData.length); elementData = (Object[]) elementData1.get(o); System.out.println(elementData.length); } }
替换
替换,本质上就是一个变换,只不过这个是在原数据上修改。
@Override @SuppressWarnings("unchecked") public void replaceAll(UnaryOperator<E> operator) { Objects.requireNonNull(operator); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { elementData[i] = operator.apply((E) elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; }
排序
排序,其实现了通用的排序算法(调用Array.sort
方法),排序比较规则交给用户来指定。
@Override @SuppressWarnings("unchecked") public void sort(Comparator<? super E> c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, size, c); if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; }
遍历
Itr
实现了可以向后遍历
和remove
操作的迭代器,由iterator
方法返回。ListItr
实现了可以向前遍历
和向后遍历
、元素的添加删除修改
的迭代器,由listIterator
方法返回。
关于遍历,不得不说一个非常有名的异常 -
ConcurrentModificationException
, 多数情况下是由于list内部数组长度发生变化导致,modCount != expectedModCount
或者是IndexOutOfBoundsException等等原因抛出的这个异常,遵循一个原则,在使用迭代器的时候,不能直接调用list的方法来修改list而要通过迭代器提供的响应方法来修改list。
ArrayList的优势和缺点
优势
顺序存储,随机存取,数据元素与位置相关联,因此查找效率高,索引遍历快,时间复杂度O(1)
尾部插入与删除的速度速度快
缺点
线程不安全
非尾节点的插入和删除需要移除后续的元素,效率较低
支持扩容不支持缩容,扩容后,原数据需逐一拷贝,效率较低
总结
本篇文章,相对来说比较简单,归根结底,对ArrayList的各种操作都是对底层数组的操作,深刻理解数组这种非常简单的数据结构对理解ArrayList的各个操作有很大帮助。
还没有评论,来说两句吧...